

Effectiveness of Experiential Accessibility Labs in the Classroom

NSF RI

Saad Khan, Mark Sternefeld, Su Thit Thazin, Heather Moses

Problem Analysis

15% of the world population has a disability

Software is not built in an accessible manner

Lack of material to educate engineers

Accessibility Learning Labs (ALL)

Objectives

Validate effectiveness of experiential learning format

Motivate and inform students to create accessible software

Demonstrate increase in satisfaction through gamification

Study Approach

5 sections of introductory computer science classes Pre-lab survey
Background material
Activity
Quiz
Post-lab survey

Evaluate Likert score from pre and post surveys

Compare sentiment analysis results

Sample Lab

Sound and Speech

Students play and repair a game requiring sound cues

Results

94% confidence in positive sentiment for experiential learning group

83% confidence in negative sentiment for traditional learning group

Interactive learning group rated their lab experience significantly more useful (p value < .0003)

Conclusion & Future Work

Students had a better learning experience with the experiential material

Incorporate experiential learning in classrooms to enhance learning

Perform usability testing to improve learning modules

Build additional lab material for new accessibility topics